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Figure 4. Effect of Murraya koenigii aqueous extract on transport of buspirone across colon

The Murraya koenigii aqueous extract (2mL) pretreatment for 7 days increased the mean
cumulative concentration of buspirone from 55.87+8.81 to 4682.67+54.24 ng/mL in duodenum
(Fig. 1), 137.86£16.10 to 5720.43+60.23 pg/mL in jejunum (Fig. 2), ileum in 165.23£7.87 to
3319.33+£52.80 pg/mL (Fig. 3) and in colon the mean cumulative concentrations were increased
from 176.70+13.76 to 2532.11+66.61 ng/mL (Fig. 4) respectively.

The transport of buspirone was increased 19.6, 8.4, 4.3 and 7.02 times after pretreatment with
Murraya koenigii aqueous extract (ImL); 83.8, 41.49, 20.32 and 14.32 times after pretreatment
with Murraya koenigii aqueous extract (2mL) compared to respective control, there was a
statistically significant (P<0.005) difference was observed.

The non-everted sac model was originally used to evaluate drug transport mechanisms (Kaul,
and Ritschel 1981). Genty et al., (2001) compared the permeability values of some actively
transported molecules and passively absorbed compounds through everted and non-everted sacs
and found that the permeability was higher for actively transported molecules when the sacs
were everted. The permeability of passive absorption drug diazepam remained the same whether
the sacs were everted or not. These results suggested that the passive permeability of actively
transported molecules can be determined through non-everted rat gut sacs (Kivisto et al., 1997).

However, Caco-2 would clearly overestimate efflux in both rat and human colon by 5- to 6-fold.
This is interesting given that these cells are derived from colonic epithelium. One explanation of
this is that in common with many tumors derived cell lines, Caco-2 may over express P-gp in
relation to its parent tissue (Van Hille et al., 1996). The results from previous studies (Lamberg
et al. 1998a and 1998b, Lilja et al., 1998) demonstrate that CYP3A inhibitors, verapamil,
diltiazem, erythromycin, itraconazole and grape fruit juice, substantially increase the area under
the curve (AUC) and the maximum concentration (Cyay) of buspirone in human plasma,
presumably by inhibiting CYP3A mediated metabolic clearance. In addition a CYP3A inducer,
rifampicin decreases the AUC and Cyax of buspirone in human plasma by 90 and 84 %,
respectively (Kivisto et al., 1999). These observations strongly suggest that CYP3A isoforms
play an important role in the metabolism of buspirone in humans. From the present study, it
appears that pretreatment with Murraya koenigii aqueous extract 10 mL Kg' /po daily had
strong effect on the intestinal transport of buspirone compared to Murraya koenigii aqueous
extract was administered at a dose of 5ml Kg™' /po daily.
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Buspirone is an azapirone anxiolytic agent that produces less sedation and impairment of
psychomotor performance than do benzodiazepines. It has poor bioavailability due to extensive
first-pass metabolism. The main constituents of the fruit oil were alpha-pinene (48.1%), beta-
pinene (7.1%), myrcene (3.1%), beta-phellandrene (26.0%), gamma-terpinene (3.0%) and beta-
caryophyllene (3.0%) (Mallavarapu et al. 2000). Tannins and terpenes present in the M. koenigii
fruit may be acting as a CYP3A inhibitors (Yoshida et al., 2006).

Conclusion

Murraya koenigii aqueous extract pretreatment appear to have a significant influence on
CYP3A4 mediated intestinal metabolism of buspirone. However, it is difficult to extrapolate our
results, which were obtained in rats to humans. ‘ :
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