
793Acta Pharmaceutica Sciencia. Vol. 62 No. 4, 2024

Liposome encapsulated curcumin in 
lysine-collagen hydrogel embedded with 
valsartan for treatment of diabetic wounds
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ABSTRACT

Impaired wound healing occurs due to factors such as diabetes, resulting in 
slow healing. The aim of this study is to develop and evaluate the wound heal-
ing potential of curcumin encapsulated liposomes in a lysine-collagen-hydrogel 
matrix embedded with valsartan for diabetic wounds. Formulations, CF1 (cur-
cumin encapsulated liposomes in lysine–collagen hydrogel), CF2 (curcumin 
encapsulated liposomes in lysine-collagen hydrogel embedded with valsartan), 
and CF3 (valsartan loaded lysine-collagen hydrogel) were prepared and evalu-
ated for physicochemical, histological, histomorphometric and wound healing 
properties. Formulation CF2 had the highest swelling ratio which was 89.2 ± 
1.95%, while CF3 had the highest viscosity of 60000.00 ± 2.07 m Pas. For-
mulation CF2 showed the best wound closure, which was 100% by day seven, 
followed by CF1, CF3, Control and then diabetic wounds that were not treated. 
Formulation CF2 was found to be the most effective in promoting re-epitheli-
zation and angiogenesis. It can serve as an effective formulation for the treat-
ment of diabetic wounds. 
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INTRODUCTION

Diabetes is a condition that occurs when the pancreas does not produce 
enough insulin, or the body lacks the ability to utilize the insulin produced by 
the pancreas effectively1. This condition may lead to a consistent state of hy-
perglycaemia and, if poorly managed, may cause damage to the blood vessels 
and nerves2.   Wounds that occur in people with poorly managed diabetes have 
a low chance of healing normally. The process of healing is impaired due to the 
hyperglycaemic state and the wound becomes chronic3. Chronic wounds ema-
nating from poorly managed diabetes are an important primary public health 
issue. More than 430 million adults are likely to be affected by diabetic wounds 
within the next decade4. A diabetic wound can be described as an impaired 
wound characterized by hypoxia, impaired neovascularization, neuropathy 
and fibroblast abnormalities4.

Diabetes has been identified as a leading cause of impaired wound healing5. 

Diabetic wounds are difficult to treat due to a variety of factors, which result 
in slow wound healing. The adverse microenvironment of a diabetic wound 
includes factors such as degenerative enzymes, alkaline pH and a complicat-
ed array of biochemical cues and processes that lead to a lack of progression 
through the primary phases of wound healing6. The impaired or chronic state 
of the wound is also caused by the high blood sugar levels, making it very un-
likely that its entire process of angiogenesis will pass through all four struc-
tured phases of wound healing. Systemic factors that affect wound healing due 
to diabetes include sustained hyperglycaemia, peripheral neuropathy, and in-
flammation at the wound site7. 

The complicated process of tissue repair relies on the combined effect of cells, 
cytokines, enzymes and growth factors. In a diabetic wound, there is a lack 
of proper regulation necessary for wound healing, which leads to the wound 
into a chronic state8. Chronic diabetic wounds need an effective ultra-modern 
delivery system that will serve as an ideal wound treatment. This novel formu-
lation should prevent infection, control the moisture level at the wound bed, 
facilitate the principal mechanisms involved in angiogenesis while stimulating 
wound closure, and finally, minimise scar formation7.

Curcuma longa is a plant from which curcumin is gotten. It is a turmeric plant 
which belongs to a group of rhizomes9. The pathway through which curcumin 
enhances wound healing is through the localization of transforming growth 
factor β1 in the wound’s microenvironment, coordination of collagen and 
reduction of reactive oxidative species. Curcumin is lipophilic, hence its de-
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creased bioavailability and wound healing activity. Liposomes may be used for 
the encapsulation of hydrophobic drugs like curcumin to enhance their bio-
availability and therapeutic activity9.

The need for advancement of the curcumin-loaded liposome formulation may 
lead to the infusion of the loaded liposomes into a polymer hydrogel to improve 
the overall stability, efficacy, and dermal contact time of the formulation with 
the wound area. The development of a liposome-in-hydrogel delivery system 
will demonstrate improved hydrophilicity and controlled release of the loaded 
drug molecules curcumin, lysine and valsartan10. In this liposome-in-hydrogel 
delivery system, the surrounding polymer hydrogel provides a solid framework 
which serves as a mechanical cushion for the liposome bi-lipid membrane, en-
hancing its stability11. The delivery system provides an attenuated burst release 
effect via the liposome due to the mechanical cushioning effect of the hydrogel. 
It provides better muco-adhesion to the wound, higher tissue localisation, as 
well as efficient muco-penetration of loaded drug molecules into the wound 
microenvironment12. Research also indicates that the presence of lysine at the 
wound microenvironment may enhance wound healing, collagen will improve 
the tensile strength of the newly formed cells in the wound’s microenviron-
ment, while valsartan may be responsible for accelerated wound contraction, 
increased tensile strength, regulation of immune responses, as well as molecu-
lar and cellular processes. This makes this group of drug molecules an ideal 
choice for potentiating a synergistic wound healing effect13,14,15. The synergistic 
effect between these bioactive compounds presents a novel approach to dia-
betic wound management16. The choice of polymer used for the development 
of the hydrogel was based on its characteristic features that aid drug delivery at 
the wound site. Carbopol delivers maximum drug in an alkaline environment 
due to its greater swelling index at higher pH.17. The pH of a diabetic wound is 
slightly alkaline (6.95)18. Carbopol, an acrylic polymer and gelling agent, is safe 
for dermal applications and non-toxic19. 

Based on existing literature, little research has been carried out regarding syn-
ergistic interactions between bioactive molecules such as curcumin, lysine, 
valsartan, and collagen. In this study, curcumin-loaded liposomes in a lysine 
collagen hydrogel embedded with valsartan is formulated. This liposome-in-
hydrogel based formulation stands out as a pioneer in its research space, as it 
provides a stable environment for the synergistic interaction between the ther-
apeutic agents (curcumin, lysine, collagen and valsartan), while also provid-
ing sustained release of these agents. The formulation developed in this study 
could be used to enhance the healing of chronic diabetic wounds20.



796 Acta Pharmaceutica Sciencia. Vol. 62 No. 4, 2024

METHODOLOGY 

Materials 

The materials utilized for this study include are Phosphatidylcholine (Sigma-
Aldrich Co., St. Louis®, MO, USA), Carbopol Ultrez (Surfachem, U.K), Valsar-
tan (Merck, Germany), Curcumin (Sigma-Aldrich Co., St. Louis®, MO, USA), 
Phosphate buffer (Loba Chemie, Colaba Mumbai, India), Urethane (Sigma-
Aldrich Co., St. Louis®, MO, USA), Methanol (Merck, Darmstadt, Germany), 
Cremophor (RH 40) (Macklin Biochemical, Shangai, China), Alloxan (Merck, 
Germany), Deionised water, Lysine (Sigma-Aldrich Co., St. Louis®, MO, USA), 
Collagen (Neocell, U.S.A), and Triethanolamine (Merck, New Jersey®, USA).

Development of curcumin-loaded liposomes

Liposomes were prepared according to ‘thin film hydration method’5. Metha-
nol (25 mL) was measured using a volumetric cylinder and poured into a round 
bottom flask. Curcumin and phosphatidylcholine (435 mg and 100 mg, respec-
tively) were weighed using an analytical balance. The curcumin and phosphati-
dylcholine were dissolved in methanol in the flask, which was then attached to 
a rotary evaporator at 45℃. After 20 min, a lipid film is observed on the inner 
surface of a spherical flask. Phosphate buffer (pH 7.4) was prepared, and 25 
mL of buffer was used to rehydrate the thin lipid film. The mixture was then 
sonicated for 15 min. Finally, the solution was vortexed for 10 min, and trans-
ferred into a 100 cm3 transparent bottle. It was labelled and stored at 4°C. Li-
posomes were analysed in terms of shape, size, and surface morphology using 
Scanning electron microscopy21.

Curcumin in-vitro drug release profile (Flow rate using Franz cell) 

In vitro drug release study was performed with Franz diffusion cell. The diffu-
sion fluid was a mixture of phosphate buffer (pH 7.4) and Cremophor RH40 
(pH 7.0). The receptor compartment was filled with the diffusion fluid. A 
membrane filter was soaked in the diffusion fluid for 45 min, and then blot-
ted on both sides. The membrane was fixed on the lower side of the donor 
compartment and fitted tightly with a ring. The Franz diffusion cell was fixed 
on a magnetic mixer and allowed to be stable at 37°C by warming. The donor 
compartment was filled with the curcumin-loaded liposomes. A stopwatch was 
started, and exactly 1 mL of sample was withdrawn from the diffusion fluid at 
intervals of 5, 10, 30, 60, 120, and 180 min. Then, 1 mL of fresh diffusion fluid 
was used to replace the fluid withdrawn from the receptor compartment of the 
Franz diffusion cell. Samples from the different time points were taken for UV 
analysis, and the experiment was performed in triplicates17, 22.
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Determination of encapsulation efficacy

Exactly 5 mL of the liposomal suspension was poured into a centrifuge tube 
and loaded onto a centrifuge, then allowed to centrifuge for 10 min at 400 rpm. 
The centrifuge tube was then removed, and the supernatant was discarded, 
while the loaded liposomes which had settled at the bottom were taken for UV 
analysis. Encapsulation efficacy was calculated using Equation (1). The experi-
ment was performed in triplicate23,24.
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Preparation of hydrogel formulations

Hydrogels were formulated by dissolving 8 g of Carbopol Ultrez in 0.4 L of 
distilled water, then left to soak overnight. Hydrogel cross-linking was carried 
out by adding three drops of triethanolamine, and the pH of the hydrogel was 
adjusted to pH 5.8 using sodium hydroxide or hydrochloric acid. The compo-
sitions of the different formulations are shown in Table 1. Curcumin-loaded 
liposomal formulation, 0.005 L, was incorporated into 0.4 L of hydrogel. Then, 
0.005 g of lysine and 1g of collagen were added to the hydrogel to obtain for-
mulation CF1. Formulation CF2 was prepared by adding 0.005 L of curcumin-
loaded liposomal formulation into 0.4 L of hydrogel, then incorporating 0.004 
g of valsartan, 5 mg of lysine and 1000 mg of collagen. Finally, formulation CF3 
was prepared by adding 0.004 g of valsartan and 1000 mg of collagen into 400 
cm3 of polymer hydrogel. They were stored at 4°C17,19.

Table 1. Formulations CF1-CF3 and their varying constituents

Ingredients CF1 CF2 CF3

(2% w/v Carbopol) Polymer Hydrogel 0.4 L 0.4 L 0.4 L

Curcumin loaded liposomes 0.005 L 0.005 L -

Lysine 0.005 g 0.005 g -

Collagen 1 g 1 g 1 g

Valsartan - 0.004 g 0.004 g
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Physicochemical characteristics of hydrogel formulations CF1-CF3

Characterisation and pH evaluation of the hydrogel formulations 
CF1-CF3

Physical evaluation and pH determination of the formulations were carried out 
after preparation. The formulations were optically examined for consistency, 
homogeneity, and colour. The pH of the hydrogel formulations was measured 
using a pH meter (Mettler Toledo, Columbus USA in triplicate25.

Rheology test

The rheological behaviour of the hydrogel formulations was determined my 
measuring their viscosity at 24 °C, at 20–100 rpm using Spindles 6.0 and 7.0 
cone and plate viscometer (Brookfield Engineering Laboratories, Middleboro, 
USA). All measurements were performed in triplicate25,26.

Swelling test

The extent of water absorbed by the hydrogel formulations was determined 
by incubating 0.1 g of dry thick hydrogel film in 50 cm3 of phosphate-buffer 
saline (pH 7.4) at 37 °C. The dry weights of the formulations were denoted as 
Sa and equilibrium swelling weight as Sb. All measurements were carried out 
in triplicate25.

The swelling ratio was expressed as:
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Stability studies

Stability tests were performed after the formulations CF1-CF3 were stored for 
one month at room temperature (23–24 °C). The appearance, texture proper-
ties and bio adhesiveness of the hydrogel were determined one day after prepa-
ration and during storage on days 3, 7, 14, 15, 30 and 6025.

In-vivo wound healing studies 

Twenty-four male Wistar rats, each weighing 380–420 g, were acquired at 
the beginning of the study. The rats were allowed to adapt to their new envi-
ronment for one week and were housed individually in polypropylene cages. 
Ethical approval was obtained for this investigation with the approval num-
ber, CMUL/ACUREC/08/21/923. Twenty-four randomly selected rats were 
divided into two sets: diabetes-induced rats (n=20) and healthy rats (n=4). 
Both sets of animals were made to fast overnight. Diabetes was induced by 
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the intraperitoneal injection of a freshly prepared solution of alloxan (50 mg/
kg) in 0.9% normal saline (pH 5.5). After seven days, blood sugar levels were 
tested using a glucometer (Accu-Check, Roche Diabetes Care Limited, U.S.A).  
Rats with blood sugar levels equal to or greater than 250 mg/dL were con-
sidered diabetic. All rats were anaesthetized intraperitoneally with urethane 
(0.03 cm3/kg). The dorsal area of each Wistar rat was carefully shaved and 
cleaned with 70% ethanol. One excision wound was created on the upper back 
of each animal using a scalpel. Bioactive dressing containing formulations CF1, 
CF2 and CF3 were used to dress the diabetic wounds starting from day three, 
while untreated non-diabetic wounds were designated “control” and diabetic 
wounds not treated were designated “DNT”. Photographs of the wound surface 
were taken, and wound closure was measured on days 1, 3, 7, and 14 post-
treatment. The wound dressing was changed on days 3, 7 and 14, and wound 
size was measured using a calliper (Mitutoyo 500-196-30, Europe). Data were 
reported as percentage wound closure against time. The percentage of wound 
contraction was calculated using Equation 327.
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were excised and fixed in 10% neutral buffered formalin. The tissues were immersed in alcohol then 

A0 = Wound size on day 0     

A1 = Wound size by day 3, 7, 14 and 21 after-treatment

Skin patch test

The hydrogel formulations (0.4 g) were applied to a shaved dorsal surface (3.0 
cm2) of three male Wistar rats. The skin appearance was visually examined for 
redness and swelling 1h after application25.

Histological and histomorphometric examination 

After the completion of the in-vivo wound studies, Wistar rats were eutha-
nized. The healed wound sites were excised and fixed in 10% neutral buffered 
formalin. The tissues were immersed in alcohol then xylene. Embedding was 
carried out using paraffin wax. The tissues were stained with haematoxylin and 
eosin (H&E) and viewed under a microscope (Leica Microsystems microscope, 
Mannheim, Germany)25.

Statistical analysis

The level of significant difference was considered if p<0.05. Statistical analyses 
were performed using Graph Pad Prism version 7.00 for Windows (GraphPad 
Software, La Jolla, CA, USA)28. 
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RESULTS and DISCUSSION

Size and morphology of curcumin-loaded liposomes

Liposomes were viewed under a scanning electron microscope, as seen in Figure 
1. The liposomes were within the size range of 5 μm-10 μm in diameter. They 
were spherical with smooth surfaces, and also appeared stable. The large size 
of the liposomes enabled the encapsulation of a higher quantity of curcumin, 
which allowed for the release of more of curcumin locally at the wound area29.

Figure 1. Scanning electron microscopic image of stable curcumin loaded liposomes 

Encapsulation efficiency 

The encapsulation efficiency of the curcumin-loaded liposomes was 99.934%, 
which is above 90%, indicating that the liposome loading of curcumin was op-
timal. This also implies that the liposomes remained stable with minimal leak-
age of curcumin. The stability of liposomes can be due to a couple of factors, 
such as the technique employed in its preparation, the type of phospholipid 
used, their size (which is influenced by the sonication time and frequency), 
and the storage conditions. Curcumin-loaded liposomes were prepared using 
a well-established technique (thin lipid film hydration), liposomes were also 
sonicated at a high frequency and an ideal time lapse. Also, liposomes were 
stored at 4℃ immediately after preparation to prevent bilayer membrane dis-
ruption due to possible lipid hydrolysis29.
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In-vitro permeation rate (flux)

Flux illustrates a phenomenon in which a substance, in this case, drug mol-
ecule curcumin, appears to pass through a membrane selectively. Flux is also 
affected by the size, morphology, and encapsulation efficiency of the liposome 
formulation. A larger liposome size provides a larger of bi-lipid area to house 
the lipophilic drug curcumin. More efficient encapsulation of curcumin is asso-
ciated with higher concentrations of curcumin per liposome and better flux, as 
more curcumin will be available to sip through the membrane. In-vitro perme-
ability, also known as flux, as seen in Figure 2 was optimal (51.229 μg/cm2/h)30.

Figure 2. The flux of the optimized curcumin loaded liposomal formulation (A). The Higuchi 
plot of percentage cumulative of curcumin released from the optimized formulation against 
square root of time (B). Data are shown as mean ± standard deviation.

Figure 2B shows a plot of percentage cumulative drug release against the 
square root of time. This plot is that of the Higuchi release model. This model 
can help to understand the basic drug release system of the curcumin-load-
ed liposomes. Analysis of the release behaviour of the liposome formulations 
shows a controlled release of curcumin over a definite period. The release of 
curcumin from the liposome involved both dissolution and diffusion mecha-
nisms. As a result, Higuchi release model can be used to fit the release of cur-
cumin from liposomes30. 

Rheological evaluation

Rheology can be described as the science of flow and deformation of a material. 
It addresses the relationship between a given deformation and the stress re-
sponse for a material such as hydrogel. Rheological techniques are commonly 
used to evaluate a material’s viscosity and viscoelastic properties in relation to 
time, temperature, and shear.
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Figure 3. The rheological plot of dynamic viscosity in Pascal against shear rate in rotation per 
minute for formulations CF1-CF3. Data are shown as mean ± standard deviation.

In Figure 3, it can be deducted that there was a decrease in dynamic viscosity 
with an increase in shear rate, indicating that the flow resistance decreased on 
an increase in shear strain. This implies that the formulations are easily spread 
on topical application. All formulations showed a shear-thinning behaviour31. 

Table 2. Physicochemical properties of formulations, CF1, CF2, and CF3

Hydrogel
Formulation

Dynamic 
Viscosity

 (20 rpm, PaS)
pH Swelling 

Index %
Skin 

Irritancy

CF1 31250 ± 1.97*** 5.8 ± 1.72* 85.7 ± 1.21*** Nil

CF2 32950 ± 1.01*** 5.8 ± 1.11* 89.2 ± 1.95*** Nil

CF3 60000 ± 2.07*** 5.8 ± 1.30* 81.4 ± 0.82*** Nil

Results are expressed as mean ± S.D (n=3). * Signifies p<0.05, ** signifies p<0.01, *** 
signifies p<0.001 with regard to significant differences.

As seen in Table 2, formulation CF3 had higher viscosity due to the absence 
of lysine, which tends to break hydrogel polymer chains. Also, the absence 
curcumin loaded liposomes contributed to its high viscosity, showing that the 
incorporation of curcumin loaded liposomes in the polymer hydrogel affected 
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the texture and consistency of the overall formulation. Formulations CF1 and 
CF2 had a more fluid like consistency and hence lower viscosity32.

Physicochemical properties of formulations CF1-CF3

The formulations appeared stable, with no change in texture, smell, or visual 
appearance, and all formulations maintained their original texture and bio ad-
hesiveness throughout the period of this study. There was no sign of redness or 
swelling one hour after application in all formulations on rat skin. Formulations 
CF1 and CF2 were translucent and pale orange with no odour, while formulation 
CF3 was opaque white in colour with no odour as well. The pH test was also car-
ried out to ascertain that the formulation was dermatologically safe. The natural 
pH of the skin is 5.5-5.7, and the closeness of the formulations’ pH (5.8) to that 
of the skin also indicates its dermal safety for application. A pH below 6.0 is 
suitable as it creates an environment to promote angiogenesis. This is because 
an acidic wound bed can inhibit microbial growth and maintain a microbe free 
wound bed, channelling it towards its expected healing pathway33.

The swelling index gives an indication of the level of porosity and cross-linkage 
that occurs on a molecular and structural level in the hydrogel. The swelling 
index of a hydrogel is also affected by pH and temperature. This influences 
liposome uptake and release from the hydrogel. Formulation CF2 had the peak 
swelling index, while CF3 had the least. The higher the level of cross-linkage 
the lower the swelling index. The relationship between drug release rate and 
the level of cross-linkage of hydrogel matrix is direct: the higher the level of 
cross-linkage, the faster the drug release rate34.

In-vivo wound healing studies

Angiogenesis is a normal biological reaction to tissue damage. However, 
wound healing is not a straightforward process as it involves complicated in-
teractions between different cell types, cytokines, mediators, and the vascular 
system. Bleeding at the onset of an injury is reduced by a domino effect of in-
stant constriction of capillaries and platelet accumulation. This is followed by 
an infiltration of various inflammatory cells. These inflammatory cells secrete 
a myriad of mediators and cytokines to enhance angiogenesis, thrombosis, 
and re-epithelialization, leading to wound contraction. In a diabetic wound, 
the chronic inflammatory response at the initial stage is sub-optimal and pro-
longed, so it becomes excessive at the latter stages of wound healing35. Angio-
genesis is impaired by poorly controlled diabetes, and there is a marked pres-
ence of neuropathy with a very high risk of poly-microbial infection. All these 
factors lead to slow wound contraction and impaired wound healing in diabetic 
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wounds. Although inflammation is an important element needed to confine 
and eliminate bacterial contamination at the earlier stages of wound heal-
ing, excessive or prolonged inflammation towards the latter stages of wound 
healing may result in a chronic state. Excessive inflammation was observed in 
DNT, as wounds presented redness and swelling, indicating excessive inflam-
mation at latter stages at the wound site. The pictorial representation in Figure 
4 shows that diabetic wounds treated with formulation CF2 had attained com-
plete wound closure by day 7 post-incision. This proves that the treatments en-
hanced the facilitation and progression of wound healing. Wounds treated with 
formulation CF3 also showed improved wound healing progression, though 
not as impressive as those treated with CF2. This may be due to the absence of 
a strong wound healing enhancing agent, curcumin. Curcumin interferes posi-
tively with every stage of wound healing. It enhances epithelisation, collagen 
infiltration, formation of new tissues and capillaries, healthy remodelling, and 
rapid wound contraction. Curcumin acts by recruiting M2-like macrophages 
into white adipose tissues. This leads to the production of anti-inflammatory 
cytokines that are important for response to the presence of foreign bodies. 
It then sufficiently lessens inflammation by the stimulation of a prototypical 
proinflammatory signalling pathway known as the NF-KB pathway at the final 
stages of wound healing.
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Figure 4. Pictorial representations of the contraction and re-epithelialization of wounds in 
rat groups treated with formulations (CF1, CF2, CF3), DNT (diabetic wound that were not 
treated with any formulation) and CTRL (non-diabetic wound that were not treated with any 
formulation).

The presence of curcumin along with other wound healing enhancing agents 
like lysine, collagen, and valsartan creates a synergistic effect responsible for 
facilitating wound healing. The absence of curcumin in formulation CF3 re-
flected in the slower wound healing progression in wounds of rats treated with 
these formulations. For all the treated wounds, complete closure was achieved 
by day 14 with no scarring observed. DNT healed with evidence of scars, indi-
cating abnormal pattern of wound healing and remodelling. The control also 
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healed by day 14 with minimal scarification observed. Wound closure was 
rapid with no scars in chronic diabetic wounds treated with the developed 
formulations (CF1-CF3) compared to the control, which was not treated with 
any formulation. This indicates that tissue regeneration and re-epithelization 
rates were better in treated wounds. Complete re-epithelization and angiogen-
esis occurred within seven days for rats treated with formulation CF2, with 
regrowth of fur at the healed wound, as seen in Figure 436.

Relative wound size reduction and histological evaluation

Microscopic images of the haematoxylin and eosin staining of tissue sections 
from wound areas are shown in Figure 5A-E. All treated wounds showed the 
normal architecture of the skin, with the five layers of the epidermis intact, 
as well as the dermis37. DNT showed an abnormal tissue structure, showing 
clear perversion in the layers of the epidermis, the papillary dermis, and the 
reticular dermis (Figure 5E).

Figure 5. The microscopic images of the haematoxylin and eosin staining of tissue sections 
of wound areas of representative rats (A-E). The percentage relative wound size reduction from 
days 1 to day 14 (post-surgery) for chronic diabetic wounds (F). Data are shown as mean ± 
standard deviation.

The graph of percentage wound contraction against time, shown in 5F, showed 
that healing took place over a period of fourteen days and most of the wound con-
traction took place after the initial inflammation and proliferative phases37. All 
the rats used for the study survived through the post-operative process till eutha-
nasia. Figures 5F shows wound healing curves similar to that of biological growth 
curves for all treated wounds. A different curve pattern was observed for DNT and 
control groups, proposing abnormal wound healing trajectory in these groups38.
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In Figure 5A-E, it can be seen that there is regrowth of the epidermis and pres-
ence of matured granulation tissue in diabetic wounds treated with formula-
tion CF1, CF2, CF3, and the control. The arrow pointing to the spot marked X 
shows the wholly restructured epidermal and dermal layers, while spot Z shows 
the presence of newly formed connective tissues and capillaries, showing evi-
dence of healthy wound healing. In Figure 5E, the spot Y shows a deformed 
tissue architecture for the DNT group, with abnormal layers of the epidermis 
and dermis, indicating poor wound healing and a lack of healthy regeneration 
of the dermal layers39-41.

Histomorphometric analysis

Histomorphometry is described as the quantitative measurement of the shape 
or form of tissue42. It involves the quantitative analysis of parameters such 
as number of micro-vessels in the granulation tissue, percentage of collagen 
present in the granulation tissue, rates of re-epithelization, number of inflam-
matory tissues present and the thickness of the central region from the epi-
dermis to dermis. These values are quantitative pointers to how well a wound 
has healed. The percentage re-epithelization rates show the level of migration 
of epithelial cells toward the wound bed for tissue repair, the epithelial cells 
achieve tissue repair through thick tissue formation43. The number of micro-
vessels in granulation tissue shows the structural depth to which healing has 
occurred. Granulation tissue is basically composed of new connective tissue 
and micro blood vessels that form on the surface of a wound during the healing 
process. Granulation tissues progress from the base of the wound upwards to 
form the surface of a wound during the healing process31. Marked microvas-
cular regeneration also indicates that proper neovascularization occurred in 
the vascular tissue at the wound bed40. The thickness of the central region of 
the epidermis and the dermis after wound healing shows how restructured the 
microenvironment of the wound bed is, whilst a high number of inflammatory 
cells in granulation tissue may mean that the wound is infected41, 42.
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Figure 6. Histomorphometrical values for diabetic wound tissues fourteen days post wound 
incision (A - E). Data are shown as mean ± standard deviation. (*** means p<0.001, ** means 
p is between 0.001- 0.01, * means p is between 0.01 to 0.05, ad ns means p≥ 0.05).  

Figures 6 (A-E) shows that the number of inflammatory cells were higher in the 
control group, indicating a likelihood of high microbial load at the wound site in 
the control group. The disparity between the control and other groups in terms 
of number of inflammatory cells is statistically significant. The re-epitheliza-
tion rates obtained were highest for CF2 compared to the control and DNT. All 
wounds treated with formulations CF1, CF2, and CF3 showed re-epithelization 
rates above 70%, and they also contained higher collagen tissues. There was a 
clear and statistically significant difference between treatment group CF2 and 
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the control group in regard to the re-epithelization rates. The most therapeuti-
cally effective formulation, which enhanced rapid re-epithelization, contained 
curcumin, lysine, collagen, and valsartan (CF2). The formulations containing 
curcumin gave more rapid tissue regeneration43. This is primarily because the 
curcumin is favourably associated with the cellular events that occur in the 
inflammatory and proliferative phases44. Collagen is also known to contribute 
to the tissue tensile strength during angiogenesis at the wound bed45. Vals-
artan accelerates wound contraction, increases tensile strength of new tissue, 
regulates immune responses, as well as molecular and cellular processes in 
wound healing13. The number of micro vessels in the granulation tissue and the 
thickness of the central region of the epidermis to dermis indicate the depth 
of structural wound healing taking place as formation of micro vessels is nec-
essary for vascular function at the wound site. Diabetic wounds treated with 
formulations CF1-CF3 showed a larger amount of micro vessels and a thicker 
central region of the epidermis and the dermis compared to the control and 
DNT (Figure 6). CF2 showed the highest level of significant difference when 
compared to the control in terms of number of micro vessels in tissue gran-
ulation and the thickness of the central region of the epidermis to dermis36. 
All formulations had hydrogel as base, however, curcumin-loaded liposome 
in lysine collagen hydrogel embedded with valsartan is preferred for manage-
ment of diabetic chronic wounds due to its good swelling index, ideal viscosity, 
excellent in-vitro drug release, and encapsulation efficiency. Curcumin loaded 
liposome in lysine-collagen hydrogel embedded with valsartan demonstrated 
the peak wound contraction and was effective in promoting wound healing as 
it contained curcumin, collagen, lysine, and valsartan. The synergistic effect 
of these components had a clearly pronounced effect on angiogenesis at the 
wound site. Therefor this formulation can serve as an archetype for subsequent 
development as it portrays excellent therapeutic capabilities as a formulation 
for smart wound dressing for the management of diabetic chronic wounds.
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