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INTRODUCTION

Niosomes are hydrated non-ionic vesicles of surfactant having the unique po-
tential to entrap both hydrophilic and lipophilic drugs. They are unilamellar or 
multilamellar vesicles of surfactants with cholesterol or its derivatives, enclosed 
by an aqueous compartment1. The self-assembling properties of surfactants on 
hydration are responsible for formation of shapes like micelles or planar lamel-
lar bilayer of microscopic and nanoscopic vesicles2. They are osmotically stable, 
non-immunogenic, biocompatible, biodegradable, and act as permeation en-
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ABSTRACT

The present study endeavors to prepare a niosomal gel of  Cefoperazone sodium 
(CFS),  as a novel dermal delivery for the treatment of skin infections. CFS loaded 
niosomes were prepared using different molar ratio of Tween 80 and Cholesterol 
by ether injection method using experimental design. The optimized formula was 
evaluated for DSC, XRPD and AFM. A niosomal gel with the optimized formulation 
was prepared in Carbopol 934 and were evaluated for gelling properties, in-vitro 
release, ex-vivo permeation and skin irritation study on rats. Quality by design was 
successfully executed to get stable (Zeta potential -30mV), nano sized (365.3 nm) 
niosomal vesicles. The niosomal gel of CFS showed a pH around 5.5, and a viscosity 
of 84.13±0.25 cps, enhanced permeation and no skin irritation. Hence, the study 
depicts that a superior site-specific delivery of CFS can be achieved with a niosomal 
gel of the drug in the treatment of skin infections.
Keywords: Cefoperazone sodium, custom design, niosomes, niosomal gel, ex-vivo 
evaluation
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hancers3.  They can easily adsorb or fuse with stratum corneum and can pass 
through the intra epidermal channels, and diffuse deep into the skin to produce 
systemic effects.  They can increase the fluidity of the  skin membrane  and 
results in enhancement in the  permeability of drugs when applied topically4.

Cefoperazone sodium, a semi synthetic broad-spectrum antibacterial drug used 
in the infections of skin caused by Pseudomonas aeruginosa, Streptococcus py-
ogenes and Staphylococcus aureus 5. It is administered in divided doses of 2 to 
4 gm intravenously per day depending on the severity. The drug has low serum 
half-life (2hours) and bound mostly in the plasma protein which is also reported 
to be dose dependent6. Therefore, an approach to develop a topical formulation 
of cefoperazone sodium could be beneficial in the treatment of skin infections 
considering localization of the drug at the site of action with improved patient 
compliance. As per the reported data, the drug has a low log P value6, therefore, 
encapsulation of the drug in the niosomal vesicle could improve permeation of 
the drug through the skin. The drug can be encapsulated in the aqueous core of 
the nonionic vesicles. Cholesterol which is a common component in biological 
membrane, can influence the permeability and fusion of the vesicles through the 
stratum corneum, can be added to improvise the bilayer property of the nonionic 
surfactant vesicle7. Several studies have reported that the residence time of drug 
in stratum corneum was enhanced through niosomal delivery as it altered the 
horny layer properties8 and enhance the stability of the entrapped drug9. 

Hence, the present study discusses on the development and evaluation of nioso-
mal gel of cefoperazone sodium with targeting of the drug at the site of infection 
to provide better efficacy and patient compliance over the conventional dosage 
forms. 

METHODOLOGY

Materials

Cefoperazone sodium (CFS) was gifted from Aurobindo Pharma Ltd, Hy-
derabad, India. Cholesterol was obtained from Loba Chemie, Mumbai, India. 
Carbopol-940 was purchased from SD Fine Chemicals Limited, Mumbai, India. 
Rest of the used chemicals and reagents were of analytical grade.

Methods

Employment of custom design in the methods of preparation 
of niosomes 

The niosomes were prepared by ether injection method. The various process 
parameters like rate of injection, volume of injection and the property of the 
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materials can affect the encapsulation efficiency and the vesicular size of ni-
osomes10. Presence of cholesterol plays an important role in bilayer stability of 
niosome and entrapment of drug1. The software JMP version 13 was availed to 
estimate the effect of surfactant and cholesterol ratio, and process parameters 
on the response on niosomes vesicle size, and entrapment efficiency with twelve 
experimental runs through custom design. A two level (low (-1) and high level 
(+1)) testing of each variable was done against the responses. From the initial 
screening study and review of reported literature the composition of surfactant: 
cholesterol molar ratio (X1) was varied from 6:4 to 8:6, and the process param-
eters, the rate of injection(X2) and the hydration volume(X3) were varied from 
0.5 to 1.5 mL/min, and 10mL to 30mL respectively.

Ether Injection Method for preparation of cefoperazone 
loaded niosomes (CFS-NIO) 

A solution with appropriate molar ratio of cholesterol and surfactant (Tween 
80) in ether was prepared. An aqueous solution of the drug (0.067%w/v) was 
prepared in phosphate citrate buffer at pH 3. The organic phase was slowly 
injected into the preheated aqueous solution of the drug maintained at 60 °C 
through a syringe pump.  The vaporization of ether leads to the spontaneous 
formation of lamellar vesicles of the surfactants containing a drug11. The result-
ant drug-loaded niosome formulations (CFS-NIO) were equilibrated at room 
temperature and stored overnight at 4°C in the refrigerator prior taken for fur-
ther evaluation.

Evaluation of niosomes

Particle size distribution

Horiba SZ-100 nanoparticle size analyzer was used to determine the particle 
size of the niosomes. After suitable dilution with double distilled water, the 
sample of niosomal dispersion was placed in disposable cuvettes for particle 
size measurements at a scattering angle of 900 at 25.2°C12. Three trials were 
done for determining the average particle size of each formulation.

Estimation of zeta potential

The zeta potential of all the CFS-NIOs was measured in Horiba SZ100.  After 
dilution of the samples with doubled distilled water, three measurements were 
carried out for each sample at 25.2°C 12.

Estimation of drug entrapment efficiency

Entrapment efficiency of all the CFS-NIO formulations were determined by cen-
trifugation method. Niosomal formulations were centrifugated at 14000 rpm 
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for 40 min at 4ºC. The supernatant layer was separated to estimate the un-
entrapped drug (Fdrug). A 0.22μm AST syringe filter was used to filter the su-
pernatant layer. It was suitably diluted with phosphate buffer pH 5.5 and ana-
lyzed by UV-visible spectroscopy at λ max 286nm to estimate the free drug. 
The analytical method for assay was validated prior by establishing a linearity 
range between 5-25μg/mL with a regression coefficient value of (R2) 0.9991. 
The method was found to be accurate, precise, and robust   with relative stand-
ard deviation (RSD) of less than 2%. The total drug (Tdrug) was estimated by 
lysing the equal volume of niosomal dispersion in methanol followed by cen-
trifugation and analyzed spectrophotometrically at 286nm. A blank niosomal 
dispersion of each formulation was treated in the similar way and used as blank 
to nullify the effect of excipients in absorbance.

The entrapment efficiency was determined using the following formula 8,13. Each 
result represents an average of three trials with standard deviation.
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Differential scanning colorimetry (DSC)

DSC was used for thermal analysis of pure drug (CFS) and LYP-CFS-NIO formu-
lation. The instrument used was DSC-60, Shimadzu, Japan. Each sample was 
placed in an aluminum pan, sealed with pierced lids, and heated at 5 °C/min over 
a temperature range of 30–300 °C under a nitrogen purging of 40 mL/min16.

 X-ray powder diffraction (XRPD)

XRPD patterns of the pure drug (CFS) and LYP-CFS-NIO formulation were ob-
tained using an X-ray diffractometer (X’ Pert3 powder-Malvern Panalytical). A 
Cu-Ka radiation was used to analyze the sample between 4° and 100° 2θ with a 
scan rate of 4°/min. Voltage and current were maintained at 40 kV and 30 mA, 
respectively16.

Preparation of niosomal gel CFS-NIO-gel

The LYP-CFS-NIO equivalent to 0.01%w/w drug was incorporated into a gel 
base of Carbopol 934(2%w/w). The required quantity of Carbopol 934 in a small 
amount was dispersed in distilled water and hydrated for 4 h.  Propylene glycol 
(7%w/w) was added to the hydrated base. Triethanolamine solution (1%w/v) 
was used to adjust the pH of the base to 5.5. Finally, distilled water was added 
to adjust the gel weight to 10g17. A gel containing pure drug of the equivalent 
quantity was prepared in the same manner for comparative evaluation.

Evaluation of gel 

pH of gel 

Digital pH meter (Digisun Electronics System) was used to determine pH of 
CFS-NIO-gel. It was calibrated before its use. The pH measurement was made 
in triplicates18.

Viscosity of gel  

The viscosity of CFS-NIO-gel was determined at 250C by using brook field vis-
cometer. The niosomal gel (20g) was rotated at 10 rpm with spindle 2. Three 
trials were made for the estimation of viscosity18.

Drug content for drug-loaded niosomal gel

A known quantity of the CFS-NIO-gel was taken in the Eppendorf tube and di-
luted with methanol and kept for vortex mixing for 10minutes. An aliquot was 
withdrawn, filtered with syringe filter, diluted suitably with phosphate buffer 
pH 5.5, and estimated for drug content spectrophotometrically at 286nm19,20. 
Three trials were run to confirm the estimation.
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Spreadability

Spreadability was determined based on slide and drag method. An excess of the 
CFS-NIO-gel was placed on a glass slide. Another slide was placed over it. To 
spread the gel uniformly on slide, a weight of 500g was placed on the top of the 
slides for few minutes. Spreadability was determined by measuring the time to 
drag a fixed distance after placing a weight of 100 g on the slides21,22. Spread-
ability was calculated by  
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Skin irritation test  

The skin irritation study of LYP-CFS-NIO-gel was performed on six wistar albino rats. The 
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In-vitro drug release and kinetic study

The in-vitro drug release of niosomal gel was carried out in Franz diffusion cell 
apparatus using 0.22μm dialysis membrane from Himedia. The dialysis mem-
brane was soaked in phosphate buffer pH 7.4 overnight prior use. The receptor 
compartment was filled with 45mL of phosphate buffer of pH 7.4. A quantity 
of 1 g gel was placed in the donor compartment. The whole assembly was kept 
over magnetic stirring and the temperature of the assembly was maintained 
at 3700.50C. An aliquot of 1mL was withdrawn at a suitable time interval and 
replenished with equal volume of fresh media to maintain sink conditions. The 
study was carried out for 8h. The aliquots after suitable dilution were analyzed 
spectrophotometrically at 286nm. The % cumulative drug release was calculat-
ed23. The release kinetics data were analyzed for zero order, first order, Higuchi, 
Korsmeyer-Peppas model through linear regression analysis

Ex-vivo diffusion study

The ex-vivo studies were executed using the abdominal skin of albino Wistar 
rats weighing between 250-300gms. To conduct the study an approval from 
the institutional ethical committee vides the approval number KCP/IAEC/
PCEU/39/2019 was procured in advance. The rats were euthanized using ex-
cess of carbon dioxide, the abdominal skin was depilated, and rinsed thorough-
ly with phosphate buffer of pH 7.4. A section of the skin was cut and tied to 
donor compartment of the Franz diffusion cell such that the dorsal side of the 
skin projecting the donor compartment. The receptor compartment was filled 
with 45mL phosphate buffer of pH 5.5.  The LYP-CFS-NIO-gel and gel of pure 
drug containing equivalent drug were taken for permeation study. The receptor 
compartment was under magnetic stirring. The temperature of the assembly 
was maintained at 3200.50C. The samples were withdrawn at constant interval 
of time for 8h, the same volume of fresh solution was replaced to maintain sink 
condition. The withdrawn samples were suitably diluted and analyzed spectro-
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photometrically at 286nm24. From the data the permeation constant (Kp) and 
the steady state permeation flux (Jss) were determined.

Skin irritation test 

The skin irritation study of LYP-CFS-NIO-gel was performed on six wistar al-
bino rats. The dorsal and ventral side of the rats were shaved to remove the 
hairs. Marking was done on both sides. Ventral  and the dorsal side served as 
control and test, respectively. Gel was applied once a day for three consecutive 
days. The skin irritation was recorded by observation for any skin sensitivity 
reactions like swelling, redness, and skin rash25,26.

RESULTS and DISCUSSION

Optimization of the custom design through evaluation of particle 
size, zeta potential  and % entrapment efficiency of CFS-NIO

The custom design constitutes a radical approach to find the possibility of 
investigating a high number of variables at different levels with minimal ex-
perimentation. The use of center points in the design increased the confidence 
level and helped to minimize the errors on experimentation. The experimental 
runs of the twelve formulations resulted the responses %entrapment efficiency 
(%EE), and particle size (PS) as shown in table 1. 

Table 1: Factors and observed responses for the custom design 

Formulation 
code

Surfactant: 
cholesterol

(Molar ratio)
(X1)

Rate of 
injection
(mL/min)

(X2)

Hydration 
volume (mL)

(X3)

Particles 
size(nm)

(PS)

Drug 
entrapment 

efficiency (%)
(EE)

F1 1 1 1 317.4± 5.09 98.93±0.001

F2 -1 -1 1 416.5± 4.04 98.93±0.003

F3 0 0 0 499± 0.05 98.89±0.009

F4 1 -1 -1 339.8± 3.08 98.56±0.052

F5 -1 1 -1 433.5± 6.08 98.76±0.001

F6 -1 1 1 453.9±7.03 99.11±0.025

F7 1 -1 -1 361.3± 9.05 98.41±0.01

F8 1 -1 1 644.3± 507 98.81±0.085

F9 0 0 0 412.1±9.44 98.92±0.096

F10 1 1 -1 290.4±8.06 98.98±0.034

F11 1 1 1 249±6.01 98.99±0.047

F12 -1 -1 -1 378.5±8.08 98.94±0.011
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Regression analysis was done to generate a relationship between factors and 
responses using JMP V13 software. The response surface diagrams depicted the 
significant effect of composition, hydration volume and rate of injection on en-
trapment efficiency. The particle size of the niosomes were greatly affected with 
rate of injection and hydration volume.  The three-dimensional (3D) response 
surface graphs represented the most statistically significant variables on the 
evaluated responses as shown in figure 1.
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Figure 1: Response surface diagram of variables on the three responses A: %EE, B: %EE C:PS

The response surface diagrams revealed that higher the hydration volume the 
higher the EE. The particle size was significantly affected by the rate of injec-
tion. The effect of the various factors on the responses were estimated through 
parameter sensitivity analysis and listed in table 2.
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Table 2: Parameter sensitivity analysis

Factors Prob> t

% Entrapment Efficiency (EE) Particle Size (PS)

SAA:CH 0.042* 0.088

Rate of injection 0.036* 0.013*

Hydration 0.010* 0.011*

*indicates significance

The best-fitted model for the design was found to be the quadratic model when 
the validation was carried out at a significance level of P<0.05. The ANOVA 
study showed the model was significant for estimation of the effects of compo-
sitions and process parameters on entrapment efficiency and  particle size as 
shown in figure 2 in the predicted vs observed graph. The regression coefficient 
value of more than 0.9 proved further the significance of the model with respect 
to all the responses.
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Figure 2: Actual vs predicted plot of variables on the two responses A: %EE, B: PS.

The model optimization was carried out at desirability of 0.78 and an optimized 
condition was predicted at a SAA/CH molar ratio of 7:5, rate of injection 1 mL/
min and a hydration volume of 20 mL to yield a drug loaded niosome with high 
EE and small PS. The optimized formulation was prepared with the predicted 
parameters and evaluated for the responses. The listed experimental values of 
the optimized product prepared are shown in table 3. The responses of the op-
timized product were close to the predicted values with low percentage bias, 
suggesting the rationality and reliability of the model.
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Table 3: Comparison of the predicted and experimental values of the optimal condition

Responses Predicted Experimental %Bias

%Entrapment efficiency 96.65 94±0.66 2

Particle size (nm) 374 365.3±0.82 2.94

The zeta potential of the optimized formulations was found to be -30mV. The 
particle size and the zeta potential of the optimized formulations are shown in 
figure 3. 
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A stable vesicular system was predicted from the study of surface charge27. 
Therefore, the proposed design was capable to produce CFS loaded stable nano 
sized niosomes.

Atomic force microscopy (AFM)

The surface morphology of the niosomes were shown in figure 4, which revealed 
the formation of spherical and smooth surface niosomes. The AFM images in 
different scales further revealed the formation of spherical nano sized particles 
of similar size range as predicted by the design.
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Figure 4: AFM images of optimized drug-loaded niosomes formulation (A1, 2D image B1, 3D 

Image) 
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agrees with the reported studies that the presence of cholesterol affects the gel liquid transition 

temperature of the vesicles28.  Presence of long alkyl chain and hydrophilic moiety in tweens 

showed greater entrapment efficiency in niosomes while presence of cholesterol ensures greater 

bilayer stability29. 
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X-ray powder diffraction (XRPD)

The peak intensities of pure drug and the optimized freeze-dried formulations 
at various diffraction angles are represented in figure 6. The pure drug showed 
high intensity peaks whereas the peak intensities of the same peak were re-
duced in the formulation graph. The high-intensity peaks of the pure drug rep-
resented its crystalline nature, while the optimized formulation showed the ap-
pearance of same peaks with low intensities. The low intensities of the peak area 
were attributed to the localization of the drug in the lipid and surfactant matrix 
and was an indication of high entrapment Which was in confirmation with DSC 
thermograms16.
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Figure 6: PXRD patterns of a pure drug (A) and formulation (B) 

 

Evaluation of gel 

The LYP-CFS-NIO-gel showed a pH around 5.5 optimal to the skin conditions, a viscosity, 

drug content and spreadability of 84.13±0.25 cps, 95±0.52%, and 7.63 ± 0.125gm.cm/sec 
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Evaluation of gel

The LYP-CFS-NIO-gel showed a pH around 5.5 optimal to the skin conditions, 
a viscosity, drug content and spreadability of 84.13±0.25 cps, 95±0.52%, and 
7.63 ± 0.125gm.cm/sec respectively. Therefore, the gel was found to be suitable 
for dermal application based on its pH, mechanical and rheological properties.

In-vitro release and kinetics study

The in-vitro release of the LYP-CFS-NIO-gel revealed a slow release of drug 
upto 86% in 8 hours as presented in figure 7. The release kinetics followed Hi-
guchi model as per the highest regression coefficient value(R2). The Korsmeyer-
Peppas modelling yielded a release component “n” value of 0.57, indicated that 
the drug release followed quasi-Fickian diffusion model with a matrix swelling 
and diffusion of the drug from the formulation.
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Figure 7: In-vitro release study of niosomal gel of CFS.

Ex-vivo permeation study

The ex-vivo permeation study unveiled that the niosomal gel showed higher 
penetration than the non niosomal gel of pure drug as shown in figure 8. It was 
further proved by the calculation of permeation parameters as mentioned in 
table 4. The niosomal gel had a 3.28 times higher flux value than the non-nioso-
mal gel of cefoperazone sodium. This observations attributes to the formulation 
characteristics, as niosomes can be effectively used as permeation enhancer.
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Figure 8: Ex-vivo permeation study of niosomal gel and non niosomal gel of CFS. 
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Skin irritation study 

The results of the skin irritation study revealed that following three days application of CFS-

NIO- gel, there was no signs of skin irritation, no evidence on patchy or severe erythema 

associated with edema. Therefore, the gel was found to be suitable for dermal application. 
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Figure 8: Ex-vivo permeation study of niosomal gel and non niosomal gel of CFS.

Table 4: Permeation parameters

Formulation
Steady state flux(mg/

cm2/hr)
Permeation constant (Kp) 

cm/hr
Drug permeation at 8 

hours (mg/cm2)

LYP-CFS-NIO-gel 0.032 0.016 0.309 

Pure drug gel 0.009 0.005 0.108

Skin irritation study

The results of the skin irritation study revealed that following three days ap-
plication of CFS-NIO- gel, there was no signs of skin irritation, no evidence on 
patchy or severe erythema associated with edema. Therefore, the gel was found 
to be suitable for dermal application.  

The present study was designed to develop a novel delivery of cefoperazone 
sodium in niosomal gel for the treatment of skin infections. A highly perme-
able gel was prepared with niosomal cefoperazone sodium in Carbopol base, 
by screening of factors with custom design using JMP V13 software. The CFS-
NIO were characterized by their particles size, drug entrapment efficiency and 
surface charge. The optimized formulation was evaluated for AFM, DSC, XRPD 
studies and revealed the formation of nanosized stable vesicles with high en-
capsulation of drug. The CFS-NIO loaded Carbopol 934 gel showed its good 
mechanical and rheological property. The in-vitro release study showed a quasi 
Fickian release of the drug. The ex-vivo permeation and skin irritation study 
proved the improved penetrability and suitability of the gel for dermal appli-



497Acta Pharmaceutica Sciencia. Vol. 59 No. 3, 2021

cation, respectively. Therefore, an effective transdermal delivery of CFS can 
be made with the prepared niosomal gel of CFS.  These findings can create a 
paradigm for future studies for superior delivery of cefoperazone sodium in the 
treatment of skin infections.
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